Resveratrol rescues cutaneous radiation-induced DNA damage via a novel AMPK/SIRT7/HMGB1 regulatory axis


  • Huber R, Braselmann H, Geinitz H, Jaehnert I, Baumgartner A, Thamm R, et al. Chromosomal radiosensitivity and acute radiation side effects after radiotherapy in tumour patients—a follow-up study. Radiat Oncol. 2011;6:32.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Yang XJ, Ren HR, Guo XM, Hu CS, Fu J. Radiation-induced skin injury: pathogenesis, treatment, and management. Aging. 2020;12:23379–93.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Valentin J. ICRP publication 85: avoidance of radiation injuries from medical interventional procedures. Ann ICRP. 2000;30:7–67.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Wang Z, Chen Z, Jiang Z, Luo P, Liu L, Huang Y, et al. Cordycepin prevents radiation ulcer by inhibiting cell senescence via NRF2 and AMPK in rodents. Nat Commun. 2019;10:2538.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Takeda K, Arase S, Takahashi S. Side effects of topical corticosteroids and their prevention. Drugs. 1988;36:15–23.

    Article 
    PubMed 

    Google Scholar
     

  • Sanders TH, McMichael RW Jr, Hendrix KW. Occurrence of resveratrol in edible peanuts. J Agric Food Chem. 2000;48:1243–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Bradamante S, Barenghi L, Villa A. Cardiovascular protective effects of resveratrol. Cardiovasc Drug Rev. 2004;22:169–88.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Das S, Das DK. Anti-inflammatory responses of resveratrol. Inflamm Allergy Drug Targets. 2007;6:168–73.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • de la Lastra CA, Villegas I. Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res. 2005;49:405–30.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Yan H, Ying J, Du L, Zhang C, Yang Y, et al. Resveratrol ameliorates ionizing irradiation-induced long-term immunosuppression in mice. Int J Radiat Biol. 2018;94:28–36.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Velioglu-Ogunc A, Sehirli O, Toklu HZ, Ozyurt H, Mayadagli A, Eksioglu-Demiralp E, et al. Resveratrol protects against irradiation-induced hepatic and ileal damage via its anti-oxidative activity. Free Radic Res. 2009;43:1060–71.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang H, Yan H, Zhou X, Wang H, Yang Y, Zhang J, et al. The protective effects of Resveratrol against radiation-induced intestinal injury. BMC Complement Altern Med. 2017;17:410.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ndiaye M, Philippe C, Mukhtar H, Ahmad N. The grape antioxidant resveratrol for skin disorders: promise, prospects, and challenges. Arch Biochem Biophys. 2011;508:164–70.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253–95.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Anderson KA, Green MF, Huynh FK, Wagner GR, Hirschey MD. SnapShot: mammalian sirtuins. Cell. 2014;159:956–e1.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kane AE, Sinclair DA. Sirtuins and NAD(+) in the development and treatment of metabolic and cardiovascular diseases. Circ Res. 2018;123:868–85.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Howitz KT, Bitterman KJ, Cohen HY, Lamming DW, Lavu S, Wood JG, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan. Nature. 2003;425:191–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Cote CD, Rasmussen BA, Duca FA, Zadeh-Tahmasebi M, Baur JA, Daljeet M, et al. Resveratrol activates duodenal Sirt1 to reverse insulin resistance in rats through a neuronal network. Nat Med. 2015;21:498–505.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 2014;35:146–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wang RH, Sengupta K, Li C, Kim HS, Cao L, Xiao C, et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell. 2008;14:312–23.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gertz M, Nguyen GT, Fischer F, Suenkel B, Schlicker C, Franzel B, et al. A molecular mechanism for direct sirtuin activation by resveratrol. PLoS ONE. 2012;7:e49761.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Chen T, Li J, Liu J, Li N, Wang S, Liu H, et al. Activation of SIRT3 by resveratrol ameliorates cardiac fibrosis and improves cardiac function via the TGF-beta/Smad3 pathway. Am J Physiol Heart Circ Physiol. 2015;308:H424–34.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Han S, Li X, Wang K, Zhu D, Meng B, Liu J, et al. PURPL represses autophagic cell death to promote cutaneous melanoma by modulating ULK1 phosphorylation. Cell Death Dis. 2021;12:1070.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Liu X, Jin Y, Wan X, Liang X, Wang K, Liu J, et al. SALIS transcriptionally represses IGFBP3/Caspase-7-mediated apoptosis by associating with STAT5A to promote hepatocellular carcinoma. Cell Death Dis. 2022;13:642.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang M, Li Z, Zhang C, Lu X, Tu B, Cao Z, et al. SIRT7-mediated ATM deacetylation is essential for its deactivation and DNA damage repair. Sci Adv. 2019;5:eaav1118.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Vazquez BN, Thackray JK, Simonet NG, Kane-Goldsmith N, Martinez-Redondo P, Nguyen T, et al. SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair. EMBO J. 2016;35:1488–503.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Russo B, Borowczyk J, Cacialli P, Moguelet P, Truchetet ME, Modarressi A, et al. IL-25 participates in keratinocyte-driven dermal matrix turnover and is reduced in Systemic Sclerosis epidermis. Rheumatology (Oxford). 2022:keac044.

  • Gupta RK, Gracias DT, Figueroa DS, Miki H, Miller J, Fung K, et al. TWEAK functions with TNF and IL-17 on keratinocytes and is a potential target for psoriasis therapy. Sci Immunol. 2021;6:eabi8823.

  • Stevenson AW, Melton PE, Moses EK, Wallace HJ, Wood FM, Rea S, et al. A Methylome and Transcriptome Analysis of Normal Human Scar Cells Reveals a Role for FOXF2 in Scar Maintenance. J Invest Dermatol. 2022;142:1489–98.e12.

  • Russo B, Borowczyk J, Boehncke WH, Truchetet ME, Modarressi A, Brembilla NC, et al. Dysfunctional Keratinocytes Increase Dermal Inflammation in Systemic Sclerosis: Results From Studies Using Tissue-Engineered Scleroderma Epidermis. Arthritis Rheumatol. 2021;73:1311–7.

  • Ianni A, Kumari P, Tarighi S, Simonet NG, Popescu D, Guenther S, et al. SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proc Natl Acad Sci USA. 2021;118:e2015339118.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Ido Y, Duranton A, Lan F, Weikel KA, Breton L, Ruderman NB. Resveratrol prevents oxidative stress-induced senescence and proliferative dysfunction by activating the AMPK-FOXO3 cascade in cultured primary human keratinocytes. PLoS ONE. 2015;10:e0115341.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Kang R, Chen R, Zhang Q, Hou W, Wu S, Cao L, et al. HMGB1 in health and disease. Mol Asp Med. 2014;40:1–116.

    Article 
    CAS 

    Google Scholar
     

  • Santivasi WL, Xia F. Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 2014;21:251–9.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Ward JF. DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol. 1988;35:95–125.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Chatterjee N, Walker GC. Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen. 2017;58:235–63.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Juhasz B, Mukherjee S, Das DK. Hormetic response of resveratrol against cardioprotection. Exp Clin Cardiol. 2010;15:e134–8.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Juan SH, Cheng TH, Lin HC, Chu YL, Lee WS. Mechanism of concentration-dependent induction of heme oxygenase-1 by resveratrol in human aortic smooth muscle cells. Biochem Pharmacol. 2005;69:41–8.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Nichols JA, Katiyar SK. Skin photoprotection by natural polyphenols: anti-inflammatory, antioxidant and DNA repair mechanisms. Arch Dermatol Res. 2010;302:71–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Zhang Y, Guo L, Law BY, Liang X, Ma N, Xu G, et al. Resveratrol decreases cell apoptosis through inhibiting DNA damage in bronchial epithelial cells. Int J Mol Med. 2020;45:1673–84.

    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Gao P, Li N, Ji K, Wang Y, Xu C, Liu Y, et al. Resveratrol targets TyrRS acetylation to protect against radiation-induced damage. FASEB J. 2019;33:8083–93.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Dai H, Sinclair DA, Ellis JL, Steegborn C. Sirtuin activators and inhibitors: promises, achievements, and challenges. Pharmacol Ther. 2018;188:140–54.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, et al. Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 2015;29:1316–25.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wen W, Chen X, Huang Z, Chen D, Chen H, Luo Y, et al. Resveratrol regulates muscle fiber type conversion via miR-22-3p and AMPK/SIRT1/PGC-1alpha pathway. J Nutr Biochem. 2020;77:108297.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Song C, Hotz-Wagenblatt A, Voit R, Grummt I. SIRT7 and the DEAD-box helicase DDX21 cooperate to resolve genomic R loops and safeguard genome stability. Genes Dev. 2017;31:1370–81.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, et al. Endogenous HMGB1 regulates autophagy. J Exp Med. 2010;190:881–92.

    CAS 

    Google Scholar
     

  • Pasheva EA, Pashev IG, Favre A. Preferential binding of high mobility group 1 protein to UV-damaged DNA. Role of the COOH-terminal domain. J Biol Chem. 1998;273:24730–6.

    Article 
    PubMed 
    CAS 

    Google Scholar
     

  • Qi Z, Zhang Y, Qi S, Ling L, Gui L, Yan L, et al. Salidroside inhibits HMGB1 acetylation and release through upregulation of SirT1 during inflammation. Oxid Med Cell Longev. 2017;2017:9821543.

    Article 
    PubMed 
    PubMed Central 
    CAS 

    Google Scholar
     

  • Wen Q, Liu J, Kang R, Zhou B, Tang D. The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 2019;510:278–83.

    Article 
    PubMed 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Comment