Monitoring phage-induced lysis of gram-negatives in real time using a fluorescent DNA dye


  • Czaplewski, L. et al. Alternatives to antibiotics—A pipeline portfolio review. Lancet Infect. Dis. 16, 239–251 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Antibiotic development—economic, regulatory and societal challenges. Nature Reviews Microbiology. https://www.nature.com/articles/s41579-019-0293-3.

  • Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Clokie, M. R., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).

    Article 

    Google Scholar
     

  • Merabishvili, M. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4, e4944 (2009).

    Article 
    ADS 

    Google Scholar
     

  • Merabishvili, M., Pirnay, J.-P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. In Bacteriophage Therapy: From Lab to Clinical Practice (eds. Azeredo, J. & Sillankorva, S.) 99–110 (Springer, 2018). https://doi.org/10.1007/978-1-4939-7395-8_9.

  • Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol. Lett. 363, fnw047 (2016).

    Article 

    Google Scholar
     

  • Viertel, T. M., Ritter, K. & Horz, H.-P. Viruses versus bacteria—Novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J. Antimicrob. Chemother. 69, 2326–2336 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ács, N., Gambino, M. & Brøndsted, L. Bacteriophage enumeration and detection methods. Front. Microbiol. 11, 594868 (2020).

    Article 

    Google Scholar
     

  • Montso, P. K., Mlambo, V. & Ateba, C. N. Characterization of lytic bacteriophages infecting multidrug-resistant Shiga toxigenic atypical Escherichia coli O177 strains isolated from cattle feces. Front. Public Health 7, 355 (2019).

    Article 

    Google Scholar
     

  • Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. In: Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (eds. Clokie, M. R. J. & Kropinski, A. M.) 69–76 (Humana Press, 2009). https://doi.org/10.1007/978-1-60327-164-6_7.

  • Anderson, B. et al. Enumeration of bacteriophage particles. Bacteriophage 1, 86–93 (2011).

    Article 

    Google Scholar
     

  • Haines, M. E. K. et al. Analysis of selection methods to develop novel phage therapy cocktails against antimicrobial resistant clinical isolates of bacteria. Front. Microbiol. 12, 564 (2021).

    Article 

    Google Scholar
     

  • Xie, Y., Wahab, L. & Gill, J. J. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses 10, 189 (2018).

    Article 

    Google Scholar
     

  • Storms, Z. J., Teel, M. R., Mercurio, K. & Sauvageau, D. The virulence index: A metric for quantitative analysis of phage virulence. PHAGE 1, 27–36 (2020).

    Article 

    Google Scholar
     

  • Vipra, A. et al. Determining the minimum inhibitory concentration of bacteriophages: Potential advantages. Adv. Microbiol. 3, 181–190 (2013).

    Article 

    Google Scholar
     

  • Estrella, L. A. et al. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system. Bacteriophage 6, e1219440 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Kropinski, A. M. Practical advice on the one-step growth curve. Methods Mol. Biol. Clifton N.J. 1681, 41–47 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lebaron, P., Catala, P. & Parthuisot, N. Effectiveness of SYTOX green stain for bacterial viability assessment. Appl. Environ. Microbiol. 64, 2697–2700 (1998).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Holger, D. et al. Clinical pharmacology of bacteriophage therapy: A focus on multidrug-resistant pseudomonas aeruginosa infections. Antibiotics 10, 556 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Townsend, E. M. et al. Isolation and characterization of Klebsiella phages for phage therapy. PHAGE 2, 26–42 (2021).

    Article 

    Google Scholar
     

  • Tzipilevich, E., Habusha, M. & Ben-Yehuda, S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168, 186-199.e12 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Bradley, D. E. Y. The structure and infective process of a Pseudomonas aeruginosa bacteriophage containing ribonucleic acid. Microbiology 45, 83–96 (1966).

    CAS 

    Google Scholar
     

  • Ceyssens, P.-J. et al. Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa. Environ. Microbiol. 11, 2874–2883 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Watkins, S. C., Sible, E. & Putonti, C. Pseudomonas PB1-like phages: Whole genomes from metagenomes offer insight into an abundant group of bacteriophages. Viruses 10, 331 (2018).

    Article 

    Google Scholar
     

  • Delbrück, M. The burst size distribution in the growth of bacterial viruses (bacteriophages)1. J. Bacteriol. 50, 131–135 (1945).

    Article 

    Google Scholar
     

  • Damron, F. H. et al. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl. Environ. Microbiol. 79, 4149 (2013).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Ceyssens, P.-J. et al. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the phiKMV subgroup within the T7 supergroup. J. Bacteriol. 188, 6924–6931 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Lavigne, R. et al. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. mBio 4, e00061–e00013 (2013).

    Article 

    Google Scholar
     

  • Yu, X., Xu, Y., Gu, Y., Zhu, Y. & Liu, X. Characterization and genomic study of “phiKMV-Like” phage PAXYB1 infecting Pseudomonas aeruginosa. Sci. Rep. 7, 13068 (2017).

    Article 
    ADS 

    Google Scholar
     

  • Henry, M. et al. Development of a high throughput assay for indirectly measuring phage growth using the OmniLogTM system. Bacteriophage 2, 159–167 (2012).

    Article 

    Google Scholar
     

  • O’Connell, L. et al. Ultrafast and multiplexed bacteriophage susceptibility testing by surface plasmon resonance and phase imaging of immobilized phage microarrays. Chemosensors 10, 192 (2022).

    Article 

    Google Scholar
     

  • Roth, B. L., Poot, M., Yue, S. T. & Millard, P. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 63, 2421–2431 (1997).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Heesterbeek, D. A. C. et al. Complement-dependent outer membrane perturbation sensitizes gram-negative bacteria to gram-positive specific antibiotics. Sci. Rep. 9, 3074 (2019).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Catalão, M. J., Gil, F., Moniz-Pereira, J., São-José, C. & Pimentel, M. Diversity in bacterial lysis systems: Bacteriophages show the way. FEMS Microbiol. Rev. 37, 554–571 (2013).

    Article 

    Google Scholar
     

  • Harhala, M. et al. DNA dye Sytox green in detection of bacteriolytic activity: High speed, precision and sensitivity demonstrated with endolysins. Front. Microbiol. 12, 752282 (2021).

    Article 

    Google Scholar
     

  • Mosier-Boss, P. A. et al. Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl. Spectrosc. 57, 1138–1144 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Low, H. Z. et al. Fast and easy phage-tagging and live/dead analysis for the rapid monitoring of bacteriophage infection. Front. Microbiol. 11, 602444 (2020).

    Article 

    Google Scholar
     

  • Gu, J. et al. A method for generation phage cocktail with great therapeutic potential. PLoS ONE 7, e31698 (2012).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Wandro, S. et al. Phage Cocktails Constrain the Growth of Enterococcus. Msystems 7, e00019–e00022 (2022).

    Article 

    Google Scholar
     

  • Kutter, E. et al. From host to phage metabolism: Hot tales of phage T4’s takeover of E. coli. Viruses 10, 387 (2018).

    Article 

    Google Scholar
     

  • Lood, C., Haas, P. J., van Noort, V. & Lavigne, R. Shopping for phages? Unpacking design rules for therapeutic phage cocktails. Curr. Opin. Virol. 52, 236–243 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Gelman, D. et al. Clinical phage microbiology: A suggested framework and recommendations for the in-vitro matching steps of phage therapy. Lancet Microbe 2, e555–e563 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Furfaro, L. L., Payne, M. S. & Chang, B. J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol. 8, 376 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Santos, S. B. et al. The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol. 9, 148 (2009).

    Article 

    Google Scholar
     

  • Costa, A. R. et al. Accumulation of defense systems drives panphage resistance in Pseudomonas aeruginosa. bioRxiv https://doi.org/10.1101/2022.08.12.503731 (2022).

    Article 

    Google Scholar
     

  • Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326, 340–352 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Owen, S. V. et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 29, 1620-1633.e8 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Egido, J. E., Costa, A. R., Aparicio-Maldonado, C., Haas, P.-J. & Brouns, S. J. J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol. Rev. 46, fuab048 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Estrada Bonilla, B. et al. Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 28, dsab013 (2021).


    Google Scholar
     

  • Choi, K.-H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Abedon, S. T. Lysis from without. Bacteriophage 1, 46–49 (2011).

    Article 

    Google Scholar
     

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinforma. Oxf. Engl. 34, i884–i890 (2018).

    Article 

    Google Scholar
     

  • Chen, Y. et al. SOAPnuke: A mapreduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, 1–6 (2018).

    Article 
    ADS 

    Google Scholar
     

  • Li, H. seqtk: Toolkit for processing sequences in FASTA/Q formats. GitHub 767, 69 (2012).


    Google Scholar
     

  • Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput. Biol. J. Comput. Mol. Cell Biol. 19, 455–477 (2012).

    Article 
    MathSciNet 
    CAS 

    Google Scholar
     

  • Wyres, K. L. et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genomics 2, e000102 (2016).

    Article 

    Google Scholar
     

  • Wick, R. R., Heinz, E., Holt, K. E. & Wyres, K. L. Kaptive web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J. Clin. Microbiol. 56, e00197–e218 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Larsen, M. V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).

    Article 

    Google Scholar
     

  • Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Comment