Czaplewski, L. et al. Alternatives to antibiotics—A pipeline portfolio review. Lancet Infect. Dis. 16, 239–251 (2016).
Antibiotic development—economic, regulatory and societal challenges. Nature Reviews Microbiology. https://www.nature.com/articles/s41579-019-0293-3.
Sulakvelidze, A., Alavidze, Z. & Morris, J. G. Bacteriophage therapy. Antimicrob. Agents Chemother. 45, 649–659 (2001).
Clokie, M. R., Millard, A. D., Letarov, A. V. & Heaphy, S. Phages in nature. Bacteriophage 1, 31–45 (2011).
Merabishvili, M. et al. Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS ONE 4, e4944 (2009).
Merabishvili, M., Pirnay, J.-P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. In Bacteriophage Therapy: From Lab to Clinical Practice (eds. Azeredo, J. & Sillankorva, S.) 99–110 (Springer, 2018). https://doi.org/10.1007/978-1-4939-7395-8_9.
Hobbs, Z. & Abedon, S. T. Diversity of phage infection types and associated terminology: the problem with ‘Lytic or lysogenic’. FEMS Microbiol. Lett. 363, fnw047 (2016).
Viertel, T. M., Ritter, K. & Horz, H.-P. Viruses versus bacteria—Novel approaches to phage therapy as a tool against multidrug-resistant pathogens. J. Antimicrob. Chemother. 69, 2326–2336 (2014).
Ács, N., Gambino, M. & Brøndsted, L. Bacteriophage enumeration and detection methods. Front. Microbiol. 11, 594868 (2020).
Montso, P. K., Mlambo, V. & Ateba, C. N. Characterization of lytic bacteriophages infecting multidrug-resistant Shiga toxigenic atypical Escherichia coli O177 strains isolated from cattle feces. Front. Public Health 7, 355 (2019).
Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. In: Bacteriophages: Methods and Protocols, Volume 1: Isolation, Characterization, and Interactions (eds. Clokie, M. R. J. & Kropinski, A. M.) 69–76 (Humana Press, 2009). https://doi.org/10.1007/978-1-60327-164-6_7.
Anderson, B. et al. Enumeration of bacteriophage particles. Bacteriophage 1, 86–93 (2011).
Haines, M. E. K. et al. Analysis of selection methods to develop novel phage therapy cocktails against antimicrobial resistant clinical isolates of bacteria. Front. Microbiol. 12, 564 (2021).
Xie, Y., Wahab, L. & Gill, J. J. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses 10, 189 (2018).
Storms, Z. J., Teel, M. R., Mercurio, K. & Sauvageau, D. The virulence index: A metric for quantitative analysis of phage virulence. PHAGE 1, 27–36 (2020).
Vipra, A. et al. Determining the minimum inhibitory concentration of bacteriophages: Potential advantages. Adv. Microbiol. 3, 181–190 (2013).
Estrella, L. A. et al. Characterization of novel Staphylococcus aureus lytic phage and defining their combinatorial virulence using the OmniLog® system. Bacteriophage 6, e1219440 (2016).
Kropinski, A. M. Practical advice on the one-step growth curve. Methods Mol. Biol. Clifton N.J. 1681, 41–47 (2018).
Lebaron, P., Catala, P. & Parthuisot, N. Effectiveness of SYTOX green stain for bacterial viability assessment. Appl. Environ. Microbiol. 64, 2697–2700 (1998).
Holger, D. et al. Clinical pharmacology of bacteriophage therapy: A focus on multidrug-resistant pseudomonas aeruginosa infections. Antibiotics 10, 556 (2021).
Townsend, E. M. et al. Isolation and characterization of Klebsiella phages for phage therapy. PHAGE 2, 26–42 (2021).
Tzipilevich, E., Habusha, M. & Ben-Yehuda, S. Acquisition of phage sensitivity by bacteria through exchange of phage receptors. Cell 168, 186-199.e12 (2017).
Bradley, D. E. Y. The structure and infective process of a Pseudomonas aeruginosa bacteriophage containing ribonucleic acid. Microbiology 45, 83–96 (1966).
Ceyssens, P.-J. et al. Comparative analysis of the widespread and conserved PB1-like viruses infecting Pseudomonas aeruginosa. Environ. Microbiol. 11, 2874–2883 (2009).
Watkins, S. C., Sible, E. & Putonti, C. Pseudomonas PB1-like phages: Whole genomes from metagenomes offer insight into an abundant group of bacteriophages. Viruses 10, 331 (2018).
Delbrück, M. The burst size distribution in the growth of bacterial viruses (bacteriophages)1. J. Bacteriol. 50, 131–135 (1945).
Damron, F. H. et al. Construction of mobilizable mini-Tn7 vectors for bioluminescent detection of gram-negative bacteria and single-copy promoter lux reporter analysis. Appl. Environ. Microbiol. 79, 4149 (2013).
Ceyssens, P.-J. et al. Genomic analysis of Pseudomonas aeruginosa phages LKD16 and LKA1: Establishment of the phiKMV subgroup within the T7 supergroup. J. Bacteriol. 188, 6924–6931 (2006).
Lavigne, R. et al. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. mBio 4, e00061–e00013 (2013).
Yu, X., Xu, Y., Gu, Y., Zhu, Y. & Liu, X. Characterization and genomic study of “phiKMV-Like” phage PAXYB1 infecting Pseudomonas aeruginosa. Sci. Rep. 7, 13068 (2017).
Henry, M. et al. Development of a high throughput assay for indirectly measuring phage growth using the OmniLogTM system. Bacteriophage 2, 159–167 (2012).
O’Connell, L. et al. Ultrafast and multiplexed bacteriophage susceptibility testing by surface plasmon resonance and phase imaging of immobilized phage microarrays. Chemosensors 10, 192 (2022).
Roth, B. L., Poot, M., Yue, S. T. & Millard, P. Bacterial viability and antibiotic susceptibility testing with SYTOX green nucleic acid stain. Appl. Environ. Microbiol. 63, 2421–2431 (1997).
Heesterbeek, D. A. C. et al. Complement-dependent outer membrane perturbation sensitizes gram-negative bacteria to gram-positive specific antibiotics. Sci. Rep. 9, 3074 (2019).
Catalão, M. J., Gil, F., Moniz-Pereira, J., São-José, C. & Pimentel, M. Diversity in bacterial lysis systems: Bacteriophages show the way. FEMS Microbiol. Rev. 37, 554–571 (2013).
Harhala, M. et al. DNA dye Sytox green in detection of bacteriolytic activity: High speed, precision and sensitivity demonstrated with endolysins. Front. Microbiol. 12, 752282 (2021).
Mosier-Boss, P. A. et al. Use of fluorescently labeled phage in the detection and identification of bacterial species. Appl. Spectrosc. 57, 1138–1144 (2003).
Low, H. Z. et al. Fast and easy phage-tagging and live/dead analysis for the rapid monitoring of bacteriophage infection. Front. Microbiol. 11, 602444 (2020).
Gu, J. et al. A method for generation phage cocktail with great therapeutic potential. PLoS ONE 7, e31698 (2012).
Wandro, S. et al. Phage Cocktails Constrain the Growth of Enterococcus. Msystems 7, e00019–e00022 (2022).
Kutter, E. et al. From host to phage metabolism: Hot tales of phage T4’s takeover of E. coli. Viruses 10, 387 (2018).
Lood, C., Haas, P. J., van Noort, V. & Lavigne, R. Shopping for phages? Unpacking design rules for therapeutic phage cocktails. Curr. Opin. Virol. 52, 236–243 (2022).
Gelman, D. et al. Clinical phage microbiology: A suggested framework and recommendations for the in-vitro matching steps of phage therapy. Lancet Microbe 2, e555–e563 (2021).
Furfaro, L. L., Payne, M. S. & Chang, B. J. Bacteriophage therapy: Clinical trials and regulatory hurdles. Front. Cell. Infect. Microbiol. 8, 376 (2018).
Santos, S. B. et al. The use of antibiotics to improve phage detection and enumeration by the double-layer agar technique. BMC Microbiol. 9, 148 (2009).
Costa, A. R. et al. Accumulation of defense systems drives panphage resistance in Pseudomonas aeruginosa. bioRxiv https://doi.org/10.1101/2022.08.12.503731 (2022).
Cheng, X., Wang, W. & Molineux, I. J. F exclusion of bacteriophage T7 occurs at the cell membrane. Virology 326, 340–352 (2004).
Owen, S. V. et al. Prophages encode phage-defense systems with cognate self-immunity. Cell Host Microbe 29, 1620-1633.e8 (2021).
Egido, J. E., Costa, A. R., Aparicio-Maldonado, C., Haas, P.-J. & Brouns, S. J. J. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol. Rev. 46, fuab048 (2022).
Estrada Bonilla, B. et al. Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae. DNA Res. Int. J. Rapid Publ. Rep. Genes Genomes 28, dsab013 (2021).
Choi, K.-H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).
Abedon, S. T. Lysis from without. Bacteriophage 1, 46–49 (2011).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinforma. Oxf. Engl. 34, i884–i890 (2018).
Chen, Y. et al. SOAPnuke: A mapreduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, 1–6 (2018).
Li, H. seqtk: Toolkit for processing sequences in FASTA/Q formats. GitHub 767, 69 (2012).
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput. Biol. J. Comput. Mol. Cell Biol. 19, 455–477 (2012).
Wyres, K. L. et al. Identification of Klebsiella capsule synthesis loci from whole genome data. Microb. Genomics 2, e000102 (2016).
Wick, R. R., Heinz, E., Holt, K. E. & Wyres, K. L. Kaptive web: User-friendly capsule and lipopolysaccharide serotype prediction for Klebsiella genomes. J. Clin. Microbiol. 56, e00197–e218 (2018).
Larsen, M. V. et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 50, 1355–1361 (2012).
Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).
Mistry, J., Finn, R. D., Eddy, S. R., Bateman, A. & Punta, M. Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions. Nucleic Acids Res. 41, e121 (2013).

I have been writing professionally for over 20 years and have a deep understanding of the psychological and emotional elements that affect people. I’m an experienced ghostwriter and editor, as well as an award-winning author of five novels.