Design of amino acid- and carbohydrate-based anticancer drugs to inhibit polymerase η


  • Waters, L. S. et al. Eukaryotic translesion polymerases and their roles and regulation in DNA damage tolerance. Microbiol. Mol. Biol. Rev. 73, 134–154. https://doi.org/10.1128/MMBR.00034-08 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Barnes, R. P., Tsao, W. C., Moldovan, G. L. & Eckert, K. A. DNA polymerase eta prevents tumor cell-cycle arrest and cell death during recovery from replication stress. Cancer Res. 78, 6549–6560. https://doi.org/10.1158/0008-5472.CAN-17-3931 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sale, J. E., Lehmann, A. R. & Woodgate, R. Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat. Rev. Mol. Cell Biol. 13, 141–152. https://doi.org/10.1038/nrm3289 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lange, S. S., Takata, K. I. & Wood, R. D. DNA polymerases and cancer. Nat. Rev. Cancer 11, 96–110. https://doi.org/10.1038/nrc2998 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Masutani, C., Kusumoto, R., Iwai, S. & Hanaoka, F. Mechanisms of accurate translesion synthesis by human DNA polymerase η. EMBO J. 19, 3100–3109. https://doi.org/10.1093/emboj/19.12.3100 (2000).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Ceppi, P. et al. Polymerase η mRNA expression predicts survival of non-small cell lung cancer patients treated with platinum-based chemotherapy. Clin. Cancer Res. 15, 1039–1045. https://doi.org/10.1158/1078-0432.CCR-08-1227 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ummat, A. et al. Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy. Nat. Struct. Mol. Biol. 19, 628. https://doi.org/10.1038/nsmb.2295 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhao, Y. et al. Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin. PNAS USA 109, 7269–7274. https://doi.org/10.1073/pnas.1202681109 (2012).

    Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Rechkoblit, O. et al. Structural basis for polymerase η–promoted resistance to the anticancer nucleoside analog cytarabine. Sci. Rep. 8, 1–9. https://doi.org/10.1038/s41598-018-30796-w (2018).

    Article 
    CAS 

    Google Scholar
     

  • Wiley, J. S., Jones, S. P., Sawyer, W. H. & Paterson, A. R. P. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J. Clin. Investig. 69, 479–489. https://doi.org/10.1172/JCI110472 (1982).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Paterson, A. R. P. & Oliver, J. M. Nucleoside transport. II. Inhibition by p-nitrobenzylthioguanosine and related compounds. Can. J. Biochem. Physiol. 49, 271–274. https://doi.org/10.1139/o71-039 (1971).

    Article 
    CAS 

    Google Scholar
     

  • Goodell, B., Leventhal, B. & Henderson, E. Cytosine arabinoside in acute granulocytic leukemia. Clin. Pharmacol. Ther. 12, 599–606. https://doi.org/10.1002/cpt1971124599 (1971).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rassiga, A. L., Schwartz, H. J., Forman, W. B. & Crum, E. D. Cytarabine-induced anaphylaxis: demonstration of antibody and successful desensitization. Arch. Intern. Med. 140, 425–426. https://doi.org/10.1001/archinte.1980.0033015013903 (1980).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Pizzo, P. A., Robichaud, K. J., Gill, F. A. & Witebsky, F. G. Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am. J. Med. 72, 101–111. https://doi.org/10.1016/0002-9343(82)90594-0 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Burgdorf, W. H., Gilmore, W. A. & Ganick, R. G. Peculiar acral erythema secondary to high-dose chemotherapy for acute myelogenous leukemia. Ann. Intern. Med. 97, 61–62. https://doi.org/10.7326/0003-4819-97-1-61 (1982).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Jehn, U., Göldel, N., Rienmüller, R. & Wilmanns, W. Non-cardiogenic pulmonary edema complicating intermediate and high-dose Ara C treatment for relapsed acute leukemia. Med. Oncol. Tumor Pharmacother. 5, 41–47. https://doi.org/10.1007/BF03003180 (1988).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Donehower, R. C., Karp, J. E. & Burke, P. J. Pharmacology and toxicity of high-dose cytarabine by 72-hour continuous infusion 1, 2. Cancer Treat. Rep. 70, 1059 (1986) (PMID: 3461882).

    CAS 
    PubMed 

    Google Scholar
     

  • Congreve, M., Murray, C. W. & Blundell, T. L. Keynote review: Structural biology and drug discovery. Drug Discov. Today 10, 895–907. https://doi.org/10.1016/S1359-6446(05)03484-7 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Beddell, C. R., Goodford, P. J., Norrington, F. E., Wilkinson, S. & Wootton, R. Compounds designed to fit a site of known structure in human haemoglobin. Br. J. Pharmacol. 57, 201–209. https://doi.org/10.1111/j.1476-5381 (1976).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gruner, S. A., Locardi, E., Lohof, E. & Kessler, H. Carbohydrate-based mimetics in drug design: Sugar amino acids and carbohydrate scaffolds. Chem. Rev. 102, 491–514. https://doi.org/10.1021/cr0004409 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hirschmann, R. et al. Modulation of receptor and receptor subtype affinities using diastereomeric and enantiomeric monosaccharide scaffolds as a means to structural and biological diversity. J. Med. Chem. 41, 1382–1391. https://doi.org/10.1021/jm9800346 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Blocks, C. B. & Bols, B. M. Carbohydrate Building Blocks (Wiley, 1996).


    Google Scholar
     

  • Wunberg, T. et al. Carbohydrates as multifunctional chiral scaffolds in combinatorial synthesis. Angew. Chem. 37, 2503–2505. https://doi.org/10.1002/(SICI)1521-3773(19981002)37:18%3c2503::AID-ANIE2503%3e3.0.CO,2-R(1998) (1998).

    Article 
    CAS 

    Google Scholar
     

  • Schweizer, F. & Hindsgaul, O. Combinatorial synthesis of carbohydrates. Curr. Opin. Chem. Biol. 3, 291–298. https://doi.org/10.1016/s1367-5931(99)80045-3 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bednarska, N. G., Wren, B. W. & Willcocks, S. J. The importance of the glycosylation of antimicrobial peptides: natural and synthetic approaches. Drug Discov. Today 22, 919–926. https://doi.org/10.1016/j.drudis.2017.02.001 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Varamini, P. et al. Synthesis and biological evaluation of an orally active glycosylated endomorphin-1. J. Med. Chem. 55, 5859–5867. https://doi.org/10.1021/jm300418d (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Polt, R., Dhanasekaran, M. & Keyari, C. M. Glycosylated neuropeptides: A new vista for neuropsychopharmacology?. Med. Res. Rev. 25, 557–585. https://doi.org/10.1002/med.20039 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ho, H. H., Gilbert, M. T., Nussenzveig, D. R. & Gershengorn, M. C. Glycosylation is important for binding to human calcitonin receptors. Biochemistry 38, 1866–1872. https://doi.org/10.1021/bi981195e (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Herzner, H., Reipen, T., Schultz, M. & Kunz, H. Synthesis of glycopeptides containing carbohydrate and peptide recognition motifs. Chem. Rev. 100, 4495–4538. https://doi.org/10.1021/cr990308c (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Grant, S. Ara-C: Cellular and molecular pharmacology. Adv. Cancer Res. 72, 197–233. https://doi.org/10.1016/S0065-230X (1997).

    Article 

    Google Scholar
     

  • Maeda, H., Kusuhara, T., Tsuhako, M. & Nakayama, H. Phosphorylation of 5′-deoxy-5-fluorouridine with inorganic phosphorylating agents. Chem. Pharm. Bull. 56, 1698–1703. https://doi.org/10.1248/cpb.59.1447 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Chanda, D. & Harohally, N. V. Revisiting Amadori and Heyns synthesis: Critical percentage of acyclic form play the trick in addition to catalyst. Tetrahedron Lett. 59, 2983–2988. https://doi.org/10.1016/j.tetlet.2018.06.050 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Shao, Y., Fusti-Molnar, L., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S. T., Gilbert, A. T. B., Slipchenko, L. V., Levchenko, S. V., O’Neill, D. P. & DiStasio Jr, R. A. Wavefunct. Inc. (Irvine CA, 2011).

  • Trott, O. & Olson, A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461. https://doi.org/10.1002/jcc.21334 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Seeliger, D. & de Groot, B. L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. 24, 417–422. https://doi.org/10.1007/s10822-010-9352-6 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Biovia, D. S. BIOVIA Discovery Studio Client, (v16. 1.0. 15350.) (Dassault Systems, San Diego, 2017).

  • Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. Tackling exascale software challenges in molecular dynamics simulations with GROMACS. EASC https://doi.org/10.1007/978-3-319-15976-8_1 (2014).

    Article 

    Google Scholar
     

  • Kukol, A. (ed.) Molecular Modeling of Proteins Vol. 443 (Humana Press, 2008).


    Google Scholar
     

  • Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Gr. 14, 33–38. https://doi.org/10.1016/0263-7855(96)00018-5 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Huey, R. & Morris, G. M. Using AutoDock 4 with AutoDocktools: A Tutorial 54–56 (The Scripps Research Institute, USA, 2008).

  • Garcia-Diaz, M., Murray, M. S., Kunkel, T. A. & Chou, K. M. Interaction between DNA polymerase λ and anticancer nucleoside analogs. J. Biol. Chem. 285, 16874–16879. https://doi.org/10.1074/jbc.M109.094391 (2010).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Garcıa-Dıaz, M. et al. DNA polymerase λ, a novel DNA repair enzyme in human cells. J. Biol. Chem. 277, 13184–13191. https://doi.org/10.1074/jbc.M111601200 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sabini, E. et al. Structure of human dCK suggests strategies to improve anticancer and antiviral therapy. Nat. Struct. Mol. Biol. 10, 513–519. https://doi.org/10.1038/nsb942 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Mannhold, R. et al. (eds) Molecular Drug Properties: Measurement and Prediction Vol. 37 (Wiley-VCH, 2008).


    Google Scholar
     

  • Lemkul, J. A. & Bevan, D. R. Destabilizing Alzheimer’s Aβ42 protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49, 3935–3946. https://doi.org/10.1021/bi1000855 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Nedyalkova, M. A., Madurga, S., Tobiszewski, M. & Simeonov, V. Calculating the partition coefficients of organic solvents in octanol/water and octanol/air. J. Chem. Inf. Model. 59, 2257–2263. https://doi.org/10.1021/acs.jcim.9b00212 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hoekman, D. Exploring QSAR fundamentals and applications in chemistry and biology, volume 1. Hydrophobic, electronic and steric constants. J. Am. Chem. Soc. 118, 10678–10678. https://doi.org/10.1021/ja965433%2B (1996).

    Article 

    Google Scholar
     

  • Labnetwork.com. LabNetwork. https://www.labnetwork.com/frontend-app/p/#!/moleculedetails/LN00008170 (2021).

  • Sangster, J. A databank of evaluated octanol-water partition coefficients (LogP) on microcomputer diskette. Bulletin for Sangster Research Laboratories. Canadian National Committee for CODATA: Montreal, Quebec, Canada (1994).

  • Thompson, M. Material safety data sheets. Am. J. Nurs. 110, 12–14. https://doi.org/10.1097/01.NAJ.0000390501.84780.e6 (2010).

    Article 
    ADS 
    PubMed 

    Google Scholar
     

  • Schaduangrat, N. et al. Towards reproducible computational drug discovery. J. Cheminform. 12, 9. https://doi.org/10.1186/s13321-020-0408-x (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B. 113, 6378–6396. https://doi.org/10.1021/jp810292n (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241. https://doi.org/10.1007/s00214-007-0310-x (2008).

    Article 
    CAS 

    Google Scholar
     

  • Barclay, T., Ginic-Markovic, M., Johnston, M. R., Cooper, P. & Petrovsky, N. Observation of the keto tautomer of D-fructose in D2O using 1H NMR spectroscopy. Carbohydr. Res. 347, 136–141. https://doi.org/10.1016/j.carres.2011.11.003 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. https://doi.org/10.1002/jcc.21256 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Mansourian, M., Mahnam, K., Madadkar-Sobhani, A., Fassihi, A. & Saghaie, L. Insights into the human A 1 adenosine receptor from molecular dynamics simulation: Structural study in the presence of lipid membrane. Med. Chem. Res. 24, 3645–3659. https://doi.org/10.1007/s00044-015-1409-6 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem. 19, 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14%3c1639::AID-JCC10%3e3.0.CO,2-B (1998).

    Article 
    CAS 

    Google Scholar
     

  • Davydov, A. S. Solitons in Molecular Systems 113 (Reidel, Dordrecht, 1985).

    Book 

    Google Scholar
     

  • Yadava, U., Shukla, B. K., Roychoudhury, M. & Kumar, D. Pyrazolo [3, 4-d] pyrimidines as novel inhibitors of O-acetyl-L-serine sulfhydrylase of Entamoeba histolytica: An in-silico study. J. Mol. Model. 21, 96. https://doi.org/10.1007/s00894-015-2631-3 (2015).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Berendsen, H. J., Postma, J. V., van Gunsteren, W. F., DiNola, A. R. H. J. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690. https://doi.org/10.1063/1.448118 (1984).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Yadav, R. K. & Yadava, U. Molecular dynamics simulation of DNA duplex, analog of PPT (polypurine tract), its conformation and hydration: A theoretical study. Med. Chem. Res. 23, 280–286. https://doi.org/10.1007/s00044-013-0631-3 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: An Nlog (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089. https://doi.org/10.1063/1.464397 (1993).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Hess, B., Bekker, H., Berendsen, H. J. & Fraaije, J. G. LINCS: A linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    Article 
    CAS 

    Google Scholar
     

  • Kumari, R., Kumar, R., Open Source Drug Discovery Consortium, & Lynn, A. g_mmpbsa: A GROMACS tool for high-throughput MM-PBSA calculations. J. Chem. Inf. Model. 54, 1951–1962. https://doi.org/10.1021/ci500020m (2014).

  • Kessler, D. et al. Drugging an undruggable pocket on KRAS. PNAS USA 116, 15823–15829. https://doi.org/10.1073/pnas.1904529116 (2019).

    Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Karnoub, A. E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563. https://doi.org/10.1038/nature06188 (2007).

    Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • Esser, D. et al. Structure determination of the Ras-binding domain of the Ral-specific guanine nucleotide exchange factor Rlf. Biochemistry 37, 13453–13462. https://doi.org/10.1021/bi9811664 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zuber, J. et al. A genome-wide survey of RAS transformation targets. Nat. Genet. 24, 144–152. https://doi.org/10.1038/72799 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Biankin, A. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405. https://doi.org/10.1038/nature11547 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Varki, A., Kannagi, R. & Toole, B. P. Glycosylation Changes in Cancer. Essentials of Glycobiology 2nd edn. (Cold Spring Harbor Laboratory Press, 2009).


    Google Scholar
     

  • Brittain, H. G. Profiles of Drug Substances, Excipients, and Related Methodology (Academic press, 2020).


    Google Scholar
     

  • Moldoveanu, S. C. & David, V. Modern Sample Preparation for Chromatography (Elsevier, 2021).


    Google Scholar
     

  • Van Kooyk, Y. & Rabinovich, G. A. Protein-glycan interactions in the control of innate and adaptive immune responses. Nat. Immunol. 9, 593–601. https://doi.org/10.1038/ni.f.203 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cummings, R. D. The repertoire of glycan determinants in the human glycome. Mol. Biosyst. 5, 1087–1104. https://doi.org/10.1039/B907931A (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ernst, B. & Magnani, J. L. From carbohydrate leads to glycomimetic drugs. Nat. Rev. Drug Discov. 8, 661–677. https://doi.org/10.1038/nrd2852 (2009).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Comment