Apoptotic-like PCD inducing HRC gene when silenced enhances multiple disease resistance in plants


  • Dickman, M., Williams, B., Li, Y., de Figueiredo, P. & Wolpert, T. Reassessing apoptosis in plants. Nat. Plants 3, 773–779 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kabbage, M., Kessens, R., Bartholomay, L. C. & Williams, B. The life and death of a plant cell. Annu. Rev. Plant Biol. 68, 375–404 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Reape, T. J. & McCabe, P. F. Apoptotic-like programmed cell death in plants. New Phytol. 180, 13–26 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Emanuele, S. et al. Routes to cell death in animal and plant kingdoms: from classic apoptosis to alternative ways to die—a review. Rendiconti Lincei. Scienze Fisiche e Naturali 29, 397–409 (2018).

    Article 

    Google Scholar
     

  • Camagna, M. & Takemoto, D. Hypersensitive response in plants. eLS https://doi.org/10.1002/9780470015902.a0020103.pub2 (2018).

    Article 

    Google Scholar
     

  • Van Baarlen, P., Woltering, E. J., Staats, M. & Van Kan, J. A. Histochemical and genetic analysis of host and non-host interactions of Arabidopsis with three Botrytis species: An important role for cell death control. Mol. Plant Pathol. 8, 41–54 (2007).

    Article 
    PubMed 

    Google Scholar
     

  • Kushalappa, A. C., Yogendra, K. N. & Karre, S. Plant innate immune response: Qualitative and quantitative resistance. Crit. Rev. Plant Sci. 35, 38–55 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Coll, N. S., Epple, P. & Dangl, J. L. Programmed cell death in the plant immune system. Cell Death Differ. 18, 1247–1256 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Danon, A., Delorme, V., Mailhac, N. & Gallois, P. Plant programmed cell death: A common way to die. Plant Physiol. Biochem. 38, 647–655 (2000).

    Article 
    CAS 

    Google Scholar
     

  • Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. & Kroemer, G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700–714 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Kumar, G. N. M., Kannangara, C. G. & Knowles, N. R. Nucleases are upregulated in potato tubers afflicted with zebra chip disease. Planta 255, 54 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mittler, R. & Lam, E. Identification, characterization, and purification of a tobacco endonuclease activity induced upon hypersensitive response cell death. Plant Cell 7, 1951–1962 (1995).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Sui, W. et al. Arabidopsis Ca2+-dependent nuclease AtCaN2 plays a negative role in plant responses to salt stress. Plant Sci. 281, 213–222 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsiatsiani, L. et al. Metacaspases. Cell Death Differ. 18, 1279–1288 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Basak, S. & Kundu, P. Plant metacaspases: Decoding their dynamics in development and disease. Plant Physiol. Biochem. 180, 50–63 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dubey, N. et al. Genome-wide characterization, molecular evolution and expression profiling of the metacaspases in potato (Solanum tuberosum L.). Heliyon 5, e01162 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Wang, X. et al. TaMCA4, a novel wheat metacaspase gene functions in programmed cell death induced by the fungal pathogen Puccinia striiformis f. sp. tritici. Mol. Plant-Microbe Interact. 25, 755–764 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Medvedev, S. S. Calcium signaling system in plants. Russ. J. Plant Physiol. 52, 249–270 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Ding, L. et al. Resistance to hemi-biotrophic F. graminearum infection is associated with coordinated and ordered expression of diverse defense signaling pathways. PLoS ONE 6, e19008 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Chowdhury, S., Basu, A. & Kundu, S. Biotrophy-necrotrophy switch in pathogen evoke differential response in resistant and susceptible sesame involving multiple signaling pathways at different phases. Sci. Rep. 7, 17251 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lee, H.-J. & Seo, P. J. Ca2+ talyzing initial responses to environmental stresses. Trends Plant Sci. 26, 849–870 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bouché, N., Yellin, A., Snedden, W. A. & Fromm, H. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435–466 (2005).

    Article 
    PubMed 

    Google Scholar
     

  • Galon, Y., Finkler, A. & Fromm, H. Calcium-regulated transcription in plants. Mol. Plant 3, 653–669 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Ranty, B. et al. Calcium sensors as key hubs in plant responses to biotic and abiotic stresses. Front. Plant Sci. 7, 327 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • La Verde, V., Dominici, P. & Astegno, A. Towards understanding plant calcium signaling through calmodulin-like proteins: A biochemical and structural perspective. Int. J. Mol. Sci. 19, 1331 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Shi, J. & Du, X. Identification, characterization and expression analysis of calmodulin and calmodulin-like proteins in Solanum pennellii. Sci. Rep. 10, 7474 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Taiakina, V. et al. The calmodulin-binding, short linear motif, NSCaTE is conserved in L-type channel ancestors of vertebrate Cav1.2 and Cav1.3 channels. PLoS ONE 8, e61765 (2013).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hofmann, S. L. et al. Molecular cloning of a histidine-rich Ca2+-binding protein of sarcoplasmic reticulum that contains highly conserved repeated elements*. J. Biol. Chem. 264, 18083–18090 (1989).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Sacchetto, R., Damiani, E., Turcato, F., Nori, A. & Margreth, A. Ca2+-dependent interaction of triadin with histidine-rich Ca2+-binding protein carboxyl-terminal region. Biochem. Biophys. Res. Commun. 289, 1125–1134 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bell, R. A. V. & Megeney, L. A. Evolution of caspase-mediated cell death and differentiation: Twins separated at birth. Cell Death Differ. 24, 1359–1368 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Liu, J. et al. Histidine-rich calcium binding protein promotes growth of hepatocellular carcinoma in vitro and in vivo. Cancer Sci. 106, 1288–1295 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Arvanitis, D. A. et al. Histidine-rich Ca-binding protein interacts with sarcoplasmic reticulum Ca-ATPase. Am. J. Physiol.-Heart Circ. Physiol. 293, H1581–H1589 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Mishra, A. P. et al. Programmed cell death, from a cancer perspective: An overview. Mol. Diagn. Ther. 22, 281–295 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Dodueva, I. E. et al. Plant tumors: A hundred years of study. Planta 251, 82 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Gunnaiah, R. Functional characterization of wheat, fusarium head blight resistance (QTL) «Fhb1» based on non-target metabolomics and proteomics. Thesis (2013). https://escholarship.mcgill.ca/concern/theses/k643b439k.

  • Su, Z., Jin, S., Zhang, D. & Bai, G. Development and validation of diagnostic markers for Fhb1 region, a major QTL for Fusarium head blight resistance in wheat. Theor. Appl. Genet. 131, 2371–2380 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Su, Z. et al. A deletion mutation in TaHRC confers Fhb1 resistance to Fusarium head blight in wheat. Nat. Genet. 51, 1099–1105 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Li, G. et al. Mutation of a histidine-rich calcium-binding-protein gene in wheat confers resistance to Fusarium head blight. Nat. Genet. 51, 1106–1112 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Yang, J. et al. A Leymus chinensis histidine-rich Ca2+-binding protein binds Ca2+/Zn2+ and suppresses abscisic acid signaling in Arabidopsis. J. Plant Physiol. 252, 153209 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Zhu, P. et al. Structural basis for Ca2+-dependent activation of a plant metacaspase. Nat. Commun. 11, 2249 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • van de Vossenberg, B. T. L. H., Prodhomme, C., Vossen, J. H. & van der Lee, T. A. J. Synchytrium endobioticum, the potato wart disease pathogen. Mol. Plant Pathol. 23, 461–474 (2022).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Lincoln, J. E. et al. Expression of the antiapoptotic baculovirus p35 gene in tomato blocks programmed cell death and provides broad-spectrum resistance to disease. Proc. Natl. Acad. Sci. 99, 15217–15221 (2002).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Zhang, B. et al. PIRIN2 stabilizes cysteine protease XCP2 and increases susceptibility to the vascular pathogen Ralstonia solanacearum in Arabidopsis. Plant J. 79, 1009–1019 (2014).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Strange, R. N. Phytotoxins produced by microbial plant pathogens. Nat. Prod. Rep. 24, 127–144 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soni, N., Hegde, N., Dhariwal, A. & Kushalappa, A. C. Role of laccase gene in wheat NILs differing at QTL-Fhb1 for resistance against Fusarium head blight. Plant Sci. 298, 110574 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Soni, N. et al. TaNAC032 transcription factor regulates lignin-biosynthetic genes to combat Fusarium head blight in wheat. Plant Sci. 304, 110820 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Rawat, N. et al. Wheat Fhb1 encodes a chimeric lectin with agglutinin domains and a pore-forming toxin-like domain conferring resistance to Fusarium head blight. Nat. Genet. 48, 1576–1580 (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Duval, I., Brochu, V., Simard, M., Beaulieu, C. & Beaudoin, N. Thaxtomin A induces programmed cell death in Arabidopsis thaliana suspension-cultured cells. Planta 222, 820–831 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Tsuge, T. et al. Host-selective toxins produced by the plant pathogenic fungus Alternaria alternata. FEMS Microbiol. Rev. 37, 44–66 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Knight, V. I. et al. Hydroperoxides of fatty acids induce programmed cell death in tomato protoplasts. Physiol. Mol. Plant Pathol. 59, 277–286 (2001).

    Article 
    CAS 

    Google Scholar
     

  • Liu, Z. et al. Patterns of diversifying selection in the phytotoxin-like scr74 gene family of Phytophthora infestans. Mol. Biol. Evol. 22, 659–672 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Cuthbert, P. A., Somers, D. J., Thomas, J., Cloutier, S. & Brulé-Babel, A. Fine mapping Fhb1, a major gene controlling fusarium head blight resistance in bread wheat (Triticum aestivum L). Theor. Appl. Genet. 112, 1465 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hao, C. et al. Association mapping and haplotype analysis of a 3.1-Mb genomic region involved in Fusarium head blight resistance on wheat chromosome 3BS. PLoS ONE 7, e46444 (2012).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Nicot, N., Hausman, J.-F., Hoffmann, L. & Evers, D. Housekeeping gene selection for real-time RT-PCR normalization in potato during biotic and abiotic stress. J. Exp. Bot. 56, 2907–2914 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and. Methods 25, 402–408 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Hegde, N., Doddamani, D. & Kushalappa, A. C. Identification and functional characterisation of late blight resistance polymorphic genes in Russet Burbank potato cultivar. Funct. Plant Biol. https://doi.org/10.1071/FP19327 (2020).

    Article 
    PubMed 

    Google Scholar
     

  • Liu, H. et al. CRISPR-P 2.0: An improved CRISPR-Cas9 tool for genome editing in plants. Mol. Plant 10, 530–532 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Čermák, T. et al. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell 29, 1196–1217 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Hegde, N., Joshi, S., Soni, N. & Kushalappa, A. C. The caffeoyl-CoA O-methyltransferase gene SNP replacement in Russet Burbank potato variety enhances late blight resistance through cell wall reinforcement. Plant Cell Rep. 40, 237–254 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Leiminger, J., Bäßler, E., Knappe, C., Bahnweg, G. & Hausladen, H. Quantification of disease progression of Alternaria spp. on potato using real-time PCR. Eur. J. Plant Pathol. 141, 295–309 (2015).

    Article 

    Google Scholar
     

  • Qu, X., Wanner, L. A. & Christ, B. J. Using the TxtAB operon to quantify pathogenic streptomyces in potato tubers and soil. Phytopathology® 98, 405–412 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Staley, K., Blaschke, A. J. & Chun, J. Apoptotic DNA fragmentation is detected by a semi-quantitative ligation-mediated PCR of blunt DNA ends. Cell Death Differ. 4, 66–75 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar
     

  • Bollina, V. et al. Mass spectrometry-based metabolomics application to identify quantitative resistance-related metabolites in barley against Fusarium head blight. Mol. Plant Pathol. 11, 769–782 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • Gunnaiah, R. et al. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS ONE 7, 479–501 (2012).

    Article 

    Google Scholar
     

  • Kushalappa, A. C. & Gunnaiah, R. Metabolo-proteomics to discover plant biotic stress resistance genes. Trends Plant Sci. 18, 522–531 (2013).

    Article 
    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Comment