Antiretroviral APOBEC3 cytidine deaminases alter HIV-1 provirus integration site profiles


  • OhAinle, M., Kerns, J. A., Li, M. M., Malik, H. S. & Emerman, M. Antiretroelement activity of APOBEC3H was lost twice in recent human evolution. Cell Host Microbe 4, 249–259 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. Analysis of human APOBEC3H haplotypes and anti-human immunodeficiency virus type 1 activity. J. Virol. 85, 3142–3152 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Wittkopp, C. J., Adolph, M. B., Wu, L. I., Chelico, L. & Emerman, M. A single nucleotide polymorphism in human APOBEC3C enhances restriction of lentiviruses. PLoS Pathog. 12, e1005865 (2016).

    Article 

    Google Scholar
     

  • Harris, R. S. & Dudley, J. P. APOBECs and virus restriction. Virology https://doi.org/10.1016/j.virol.2015.03.012 (2015).

  • Mariani, R. et al. Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 114, 21–31 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Harris, R. S. et al. DNA deamination mediates innate immunity to retroviral infection. Cell 113, 803–809 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Yu, Q. et al. Single-strand specificity of APOBEC3G accounts for minus-strand deamination of the HIV genome. Nat. Struct. Mol. Biol. 11, 435–442 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Chelico, L., Pham, P. & Goodman, M. F. Mechanisms of APOBEC3G-catalyzed processive deamination of deoxycytidine on single-stranded DNA. Nat. Struct. Mol. Biol. 16, 454–455 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Sheehy, A. M., Gaddis, N. C., Choi, J. D. & Malim, M. H. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418, 646–650 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W. C. HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability. Mol. Cell 12, 591–601 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Sheehy, A. M., Gaddis, N. C. & Malim, M. H. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat. Med. 9, 1404–1407 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Feng, Y., Baig, T. T., Love, R. P. & Chelico, L. Suppression of APOBEC3-mediated restriction of HIV-1 by Vif. Front. Microbiol. 5, 450 (2014).

    Article 

    Google Scholar
     

  • Olson, M. E., Harris, R. S. & Harki, D. A. APOBEC enzymes as targets for virus and cancer therapy. Cell Chem. Biol. 25, 36–49 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Belanger, K., Savoie, M., Rosales Gerpe, M. C., Couture, J. F. & Langlois, M. A. Binding of RNA by APOBEC3G controls deamination-independent restriction of retroviruses. Nucleic Acids Res. 41, 7438–7452 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Holmes, R. K., Malim, M. H. & Bishop, K. N. APOBEC-mediated viral restriction: not simply editing. Trends Biochem. Sci. 32, 118–128 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Pollpeter, D. et al. Deep sequencing of HIV-1 reverse transcripts reveals the multifaceted antiviral functions of APOBEC3G. Nat. Microbiol. 3, 220–233 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Newman, E. N. et al. Antiviral function of APOBEC3G can be dissociated from cytidine deaminase activity. Curr. Biol. 15, 166–170 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Iwatani, Y. et al. Deaminase-independent inhibition of HIV-1 reverse transcription by APOBEC3G. Nucleic Acids Res. 35, 7096–7108 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Bishop, K. N., Verma, M., Kim, E. Y., Wolinsky, S. M. & Malim, M. H. APOBEC3G inhibits elongation of HIV-1 reverse transcripts. PLoS Pathog. 4, e1000231 (2008).

    Article 

    Google Scholar
     

  • Mangeat, B. et al. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424, 99–103 (2003).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Belanger, K. & Langlois, M. A. RNA-binding residues in the N-terminus of APOBEC3G influence its DNA sequence specificity and retrovirus restriction efficiency. Virology 483, 141–148 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Luo, K. et al. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation. J. Virol. 81, 7238–7248 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Wang, X. et al. The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication. J. Virol. 86, 3777–3786 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Wu, X. et al. Human immunodeficiency virus type 1 integrase protein promotes reverse transcription through specific interactions with the nucleoprotein reverse transcription complex. J. Virol. 73, 2126–2135 (1999).

    Article 
    CAS 

    Google Scholar
     

  • Mbisa, J. L., Bu, W. & Pathak, V. K. APOBEC3F and APOBEC3G inhibit HIV-1 DNA integration by different mechanisms. J. Virol. 84, 5250–5259 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Mbisa, J. L. et al. Human immunodeficiency virus type 1 cDNAs produced in the presence of APOBEC3G exhibit defects in plus-strand DNA transfer and integration. J. Virol. 81, 7099–7110 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Raghavendra, N. K. et al. Identification of host proteins associated with HIV-1 preintegration complexes isolated from infected CD4+ cells. Retrovirology 7, 66 (2010).

    Article 

    Google Scholar
     

  • Lusic, M. & Siliciano, R. F. Nuclear landscape of HIV-1 infection and integration. Nat. Rev. Microbiol. 15, 69–82 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Maertens, G. et al. LEDGF/p75 is essential for nuclear and chromosomal targeting of HIV-1 integrase in human cells. J. Biol. Chem. 278, 33528–33539 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Cherepanov, P. et al. HIV-1 integrase forms stable tetramers and associates with LEDGF/p75 protein in human cells. J. Biol. Chem. 278, 372–381 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Cherepanov, P. et al. Solution structure of the HIV-1 integrase-binding domain in LEDGF/p75. Nat. Struct. Mol. Biol. 12, 526–532 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Sowd, G. A. et al. A critical role for alternative polyadenylation factor CPSF6 in targeting HIV-1 integration to transcriptionally active chromatin. Proc. Natl Acad. Sci. USA 113, E1054–E1063 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Maskell, D. P. et al. Structural basis for retroviral integration into nucleosomes. Nature 523, 366–369 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Kirk, P. D., Huvet, M., Melamed, A., Maertens, G. N. & Bangham, C. R. Retroviruses integrate into a shared, non-palindromic DNA motif. Nat. Microbiol. 2, 16212 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Cohn, L. B. et al. HIV-1 integration landscape during latent and active infection. Cell 160, 420–432 (2015).

    Article 
    CAS 

    Google Scholar
     

  • McAllister, R. G. et al. Lentivector integration sites in ependymal cells from a model of metachromatic leukodystrophy: non-B DNA as a new factor influencing integration. Mol. Ther. Nucleic Acids 3, e187 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Ho, P. S. The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA. Proc. Natl Acad. Sci. USA 91, 9549–9553 (1994).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • van Holde, K. & Zlatanova, J. Unusual DNA structures, chromatin and transcription. Bioessays 16, 59–68 (1994).

    Article 

    Google Scholar
     

  • Bacolla, A. & Wells, R. D. Non-B DNA conformations, genomic rearrangements, and human disease. J. Biol. Chem. 279, 47411–47414 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Wells, R. D. Non-B DNA conformations, mutagenesis and disease. Trends Biochem. Sci. 32, 271–278 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Burdick, R. C., Hu, W. S. & Pathak, V. K. Nuclear import of APOBEC3F-labeled HIV-1 preintegration complexes. Proc. Natl Acad. Sci. USA 110, E4780–E4789 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Huthoff, H., Autore, F., Gallois-Montbrun, S., Fraternali, F. & Malim, M. H. RNA-dependent oligomerization of APOBEC3G is required for restriction of HIV-1. PLoS Pathog. 5, e1000330 (2009).

    Article 

    Google Scholar
     

  • Gorle, S. et al. Computational model and dynamics of monomeric full-length APOBEC3G. ACS Cent. Sci. 3, 1180–1188 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Lavens, D. et al. Definition of the interacting interfaces of Apobec3G and HIV-1 Vif using MAPPIT mutagenesis analysis. Nucleic Acids Res. 38, 1902–1912 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Shlyakhtenko, L. S. et al. Atomic force microscopy studies provide direct evidence for dimerization of the HIV restriction factor APOBEC3G. J. Biol. Chem. 286, 3387–3395 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Vandergeeten, C. et al. Cross-clade ultrasensitive PCR-based assays to measure HIV persistence in large-cohort studies. J. Virol. 88, 12385–12396 (2014).

    Article 

    Google Scholar
     

  • Belanger, K. & Langlois, M. A. Comparative analysis of the gene-inactivating potential of retroviral restriction factors APOBEC3F and APOBEC3G. J. Gen. Virol. https://doi.org/10.1099/vir.0.000214 (2015).

  • Alce, T. M. & Popik, W. APOBEC3G is incorporated into virus-like particles by a direct interaction with HIV-1 Gag nucleocapsid protein. J. Biol. Chem. 279, 34083–34086 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Cen, S. et al. The interaction between HIV-1 Gag and APOBEC3G. J. Biol. Chem. 279, 33177–33184 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Ciuffi, A. & Barr, S. D. Identification of HIV integration sites in infected host genomic DNA. Methods 53, 39–46 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Cattoglio, C. et al. Hot spots of retroviral integration in human CD34+ hematopoietic cells. Blood 110, 1770–1778 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Crooks, G. E., Hon, G., Chandonia, J. M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Schneider, T. D. & Stephens, R. M. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 18, 6097–6100 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Battivelli, E. et al. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4(+) T cells. Elife https://doi.org/10.7554/eLife.34655 (2018).

  • Soto-Giron, M. J. & Garcia-Vallejo, F. Changes in the topology of gene expression networks by human immunodeficiency virus type 1 (HIV-1) integration in macrophages. Virus Res. 163, 91–97 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Symons, J., Cameron, P. U. & Lewin, S. R. HIV integration sites and implications for maintenance of the reservoir. Curr. Opin. HIV AIDS 13, 152–159 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ciuffi, A. & Bushman, F. D. Retroviral DNA integration: HIV and the role of LEDGF/p75. Trends Genet. 22, 388–395 (2006).

    Article 
    CAS 

    Google Scholar
     

  • Schroder, A. R. et al. HIV-1 integration in the human genome favors active genes and local hotspots. Cell 110, 521–529 (2002).

    Article 
    CAS 

    Google Scholar
     

  • Maldarelli, F. et al. HIV latency. Specific HIV integration sites are linked to clonal expansion and persistence of infected cells. Science 345, 179–183 (2014).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Achuthan, V. et al. Capsid-CPSF6 interaction licenses nuclear HIV-1 trafficking to sites of viral DNA integration. Cell Host Microbe 24, 392–404 e398 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Singh, P. K. et al. LEDGF/p75 interacts with mRNA splicing factors and targets HIV-1 integration to highly spliced genes. Genes Dev. 29, 2287–2297 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Marshall, H. M. et al. Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting. PLoS ONE 2, e1340 (2007).

    Article 
    ADS 

    Google Scholar
     

  • Shun, M. C. et al. LEDGF/p75 functions downstream from preintegration complex formation to effect gene-specific HIV-1 integration. Genes Dev. 21, 1767–1778 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Ciuffi, A. et al. A role for LEDGF/p75 in targeting HIV DNA integration. Nat. Med. 11, 1287–1289 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Kim, E. Y. et al. Human APOBEC3 induced mutation of human immunodeficiency virus type-1 contributes to adaptation and evolution in natural infection. PLoS Pathog. 10, e1004281 (2014).

    Article 

    Google Scholar
     

  • Cuevas, J. M., Geller, R., Garijo, R., Lopez-Aldeguer, J. & Sanjuan, R. Extremely high mutation rate of HIV-1 in vivo. PLoS Biol. 13, e1002251 (2015).

    Article 

    Google Scholar
     

  • Sato, K. et al. APOBEC3D and APOBEC3F potently promote HIV-1 diversification and evolution in humanized mouse model. PLoS Pathog. 10, e1004453 (2014).

    Article 

    Google Scholar
     

  • Sadler, H. A., Stenglein, M. D., Harris, R. S. & Mansky, L. M. APOBEC3G contributes to HIV-1 variation through sublethal mutagenesis. J. Virol. 84, 7396–7404 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Chen, H. C., Martinez, J. P., Zorita, E., Meyerhans, A. & Filion, G. J. Position effects influence HIV latency reversal. Nat. Struct. Mol. Biol. 24, 47–54 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Vranckx, L. S. et al. LEDGIN-mediated inhibition of integrase-LEDGF/p75 interaction reduces reactivation of residual latent HIV. EBioMedicine 8, 248–264 (2016).

    Article 

    Google Scholar
     

  • Marini, B. et al. Nuclear architecture dictates HIV-1 integration site selection. Nature 521, 227–231 (2015).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Jiang, J. C. & Upton, K. R. Human transposons are an abundant supply of transcription factor binding sites and promoter activities in breast cancer cell lines. Mob. DNA 10, 16 (2019).

    Article 

    Google Scholar
     

  • Schmitz, J. SINEs as driving forces in genome evolution. Genome Dyn. 7, 92–107 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Kondo, Y. & Issa, J. P. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J. Biol. Chem. 278, 27658–27662 (2003).

    Article 
    CAS 

    Google Scholar
     

  • Bochman, M. L., Paeschke, K. & Zakian, V. A. DNA secondary structures: stability and function of G-quadruplex structures. Nat. Rev. Genet. 13, 770–780 (2012).

    Article 
    CAS 

    Google Scholar
     

  • Brazda, V., Laister, R. C., Jagelska, E. B. & Arrowsmith, C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol. 12, 33 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Jain, A., Magistri, M., Napoli, S., Carbone, G. M. & Catapano, C. V. Mechanisms of triplex DNA-mediated inhibition of transcription initiation in cells. Biochimie 92, 317–320 (2010).

    Article 
    CAS 

    Google Scholar
     

  • Verma, A., Yadav, V. K., Basundra, R., Kumar, A. & Chowdhury, S. Evidence of genome-wide G4 DNA-mediated gene expression in human cancer cells. Nucleic Acids Res. 37, 4194–4204 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Tornaletti, S., Park-Snyder, S. & Hanawalt, P. C. G4-forming sequences in the non-transcribed DNA strand pose blocks to T7 RNA polymerase and mammalian RNA polymerase II. J. Biol. Chem. 283, 12756–12762 (2008).

    Article 
    CAS 

    Google Scholar
     

  • Belotserkovskii, B. P. et al. A triplex-forming sequence from the human c-MYC promoter interferes with DNA transcription. J. Biol. Chem. 282, 32433–32441 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Siddiqui-Jain, A., Grand, C. L., Bearss, D. J. & Hurley, L. H. Direct evidence for a G-quadruplex in a promoter region and its targeting with a small molecule to repress c-MYC transcription. Proc. Natl Acad. Sci. USA 99, 11593–11598 (2002).

    Article 
    ADS 
    CAS 

    Google Scholar
     

  • Maher, L. J. 3rd, Dervan, P. B. & Wold, B. Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system. Biochemistry 31, 70–81 (1992).

    Article 
    CAS 

    Google Scholar
     

  • Delic, J., Onclercq, R. & Moisan-Coppey, M. Inhibition and enhancement of eukaryotic gene expression by potential non-B DNA sequences. Biochem. Biophys. Res. Commun. 181, 818–826 (1991).

    Article 
    CAS 

    Google Scholar
     

  • Waga, S., Mizuno, S. & Yoshida, M. Chromosomal protein HMG1 removes the transcriptional block caused by the cruciform in supercoiled DNA. J. Biol. Chem. 265, 19424–19428 (1990).

    Article 
    CAS 

    Google Scholar
     

  • Waga, S., Mizuno, S. & Yoshida, M. Nonhistone protein HMG1 removes the transcriptional block caused by left-handed Z-form segment in a supercoiled DNA. Biochem. Biophys. Res. Commun. 153, 334–339 (1988).

    Article 
    CAS 

    Google Scholar
     

  • Renner, T. M., Belanger, K., Goodwin, L. R., Campbell, M. & Langlois, M. A. Characterization of molecular attributes that influence LINE-1 restriction by all seven human APOBEC3 proteins. Virology 520, 127–136 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Longo, P. A., Kavran, J. M., Kim, M. S. & Leahy, D. J. Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol. 529, 227–240 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Cer, R. Z. et al. Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools. Nucleic Acids Res. 41, D94–D100 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    Article 
    CAS 

    Google Scholar
     

  • Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Morrison, C. S. et al. Plasma and cervical viral loads among Ugandan and Zimbabwean women during acute and early HIV-1 infection. AIDS 24, 573–582 (2010).

    Article 

    Google Scholar
     



  • Source link

    Leave a Comment