Ancient DNA reveals admixture history and endogamy in the prehistoric Aegean


  • Evans, J. D. Excavations in the Neolithic settlement of Knossos, 1957–60. Part I. Annu. Br. Sch. Athens 59, 132–240 (1964).

  • Maran, J. Kulturwandel auf dem griechischen Festland und den Kykladen im späten 3. Jahrtausend v. Chr (Habelt, 1998).

  • Wiersma, C. & Voutsaki, S. (eds) Social Change in Aegean Prehistory (Oxbow Books, 2017).

  • Weiss, H. The genesis and collapse of third millennium north Mesopotamian civilization. Science 261, 995–1004 (1993).

    Article 
    CAS 

    Google Scholar
     

  • Weiss, H. in The Oxford Handbook of the Archaeology of the Levant: c. 8000–332 BCE (ed. Killebrew, A. E.) 367–387 (Oxford Univ. Press, 2014).

  • Blegen, C. W. The Coming of the Greeks: II. The geographical distribution of prehistoric remains in Greece. Am. J. Archaeol. 32, 146–154 (1928).

    Article 

    Google Scholar
     

  • Caskey, J. L. The early Helladic period in the Argolid. J. Am. Sch. Classical Stud. Athens 29, 285–303 (1960).


    Google Scholar
     

  • Forsén, J. The Twilight of the Early Helladics: A Study of the Disturbances in East-Central and Southern Greece Towards the end of the Early Bronze Age (Univ. Gothenburg, 1992).

  • Brogan, T. M. “Minding the gap”: reexamining the Early Cycladic III “gap” from the perspective of Crete. A regional approach to relative chronology, networks, and complexity in the Late Prepalatial period. J. Archaeol. 117, 555–567 (2013).


    Google Scholar
     

  • Schoep, I., Tomkins, P. & Driessen, J. M. (eds) Back to the Beginning: Reassessing Social and Political Complexity on Crete During the Early and Middle Bronze Age (Oxbow Books, 2012).

  • Voutsaki, S. in Eliten in der Bronzezeit (eds Aravantinos, V. L. et al.) 103–142 (Verl. des Römisch-Germanischen Zentralmuseums, 1999).

  • Wiener, M. H. in The Great Islands: Studies of Crete and Cyprus Presented to Gerald Cadogan (eds MacDonald, C. F. et al.) 131–142 (Kapon Editions, 2015).

  • Cline, E. H. (ed.) The Oxford Handbook of the Bronze Age Aegean (ca. 3000–1000 bc) (Oxford Univ. Press, 2010).

  • Deger-Jalkotzy, S. & Hertel, D. Das Mykenische Griechenland: Geschichte, Kultur, Stätten (CH. Beck Wissen, 2018).

  • Killen, J. T. & Voutsaki, S. (eds) Economy and Politics in the Mycenaean Palace States (Cambridge Philological Society, 2001).

  • Maran, J. in Ariadne’s Threads. Connections between Crete and the Greek Mainland in late Minoan III (LM IIIA2 to LM IIIC) (eds D’Agata, A. L. & Moody, J. A.) 415–431 (Scuola Archeologica Italiana di Atene, 2005).

  • Moutafi, I. Towards a Social Bioarchaeology of the Mycenaean Period: A Biocultural Analysis of Human Remains from the Voudeni Cemetery, Achaea, Greece (Oxbow Books, 2021).

  • Papathanasiou, A. The Bioarchaeological Analysis of Neolithic Alepotrypa Cave, Greece (BAR, 2001).

  • Prevedorou, E.-A. The Role of Kin Relations and Residential Mobility during the Transition from Final Neolithic to Early Bronze Age in Attica, Greece. PhD thesis, Arizona State Univ. (2015).

  • Schepartz, L. A., Fox, S. C. & Bourbou, C. New Directions in the Skeletal Biology of Greece (American School of Classical Studies at Athens, 2009).

  • Triantaphyllou, S. A Bioarchaeological Approach to Prehistoric Cemetery Populations from Central and Western Greek Macedonia (Archaeopress, 2001).

  • Tritsaroli, P. Pratiques Funéraires en Grèce Centrale à la Periode Byzantine: Analyse à Partir des Données Archéologiques et Biologiques (Muséum National d’Histoire Naturelle, 2006).

  • Hughey, J. R. et al. A European population in Minoan Bronze Age Crete. Nat. Commun. 4, 1861 (2013).

    Article 

    Google Scholar
     

  • Hofmanová, Z. et al. Early farmers from across Europe directly descended from Neolithic Aegeans. Proc. Natl Acad. Sci. USA 113, 6886–6891 (2016).

    Article 

    Google Scholar
     

  • Mathieson, I. et al. The genomic history of southeastern Europe. Nature 555, 197–203 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Lazaridis, I. et al. Genetic origins of the Minoans and Mycenaeans. Nature 548, 214–218 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Olalde, I. et al. The Beaker phenomenon and the genomic transformation of northwest Europe. Nature 555, 190–196 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Haak, W. et al. Massive migration from the steppe was a source for Indo-European languages in Europe. Nature 522, 207–211 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Clemente, F. et al. The genomic history of the Aegean palatial civilizations. Cell https://doi.org/10.1016/j.cell.2021.03.039 (2021).

  • Cassidy, L. M. et al. A dynastic elite in monumental Neolithic society. Nature 582, 384–388 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Mittnik, A. et al. Kinship-based social inequality in Bronze Age Europe. Science 366, 731 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Yaka, R. et al. Variable kinship patterns in Neolithic Anatolia revealed by ancient genomes. Curr. Biol. 31, 2455–2468 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Olalde, I. et al. The genomic history of the Iberian Peninsula over the past 8000 years. Science 363, 1230 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Brück, J. Ancient DNA, kinship and relational identities in Bronze Age Britain. Antiquity 95, 228–237https://doi.org/10.15184/aqy.2020.216 (2021).

  • Prevedorou, E. & Stojanowski, C. M. Biological kinship, postmarital residence and the emergence of cemetery formalisation at prehistoric Marathon. Int. J. Osteoarchaeol. 27, 580–597 (2017).

    Article 

    Google Scholar
     

  • Bouwman, A. S. et al. Kinship in Aegean prehistory? Ancient DNA in human bones from mainland Greece and Crete. Annu. Br. Sch. Athens 104, 293–309 (2009).

  • Boyd, M. J. in Death Rituals, Social Order and the Archaeology of Immortality in the Ancient World. “Death Shall Have No Dominion” (eds Renfrew, C. et al.) 200–220 (Cambridge Univ. Press, 2016).

  • Neumann, G. U. et al. Ancient Yersinia pestis and Salmonella enterica genomes from Bronze Age Crete. Curr. Biol. 32, 3641–3649 (2022).

    Article 
    CAS 

    Google Scholar
     

  • Martiniano, R. et al. The population genomics of archaeological transition in west Iberia: investigation of ancient substructure using imputation and haplotype-based methods. PLoS Genet. 13, e1006852 (2017).

    Article 

    Google Scholar
     

  • Saag, L. Human genetics: lactase persistence in a battlefield. Curr. Biol. 30, R1311–R1313 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Jones, E. R. et al. Upper Palaeolithic genomes reveal deep roots of modern Eurasians. Nat. Commun. 6, 8912 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Mathieson, I. et al. Genome-wide patterns of selection in 230 ancient Eurasians. Nature 528, 499–503 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Rivollat, M. et al. Ancient genome-wide DNA from France highlights the complexity of interactions between Mesolithic hunter-gatherers and Neolithic farmers. Sci. Adv. 6, eaaz5344 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lipson, M. et al. Parallel palaeogenomic transects reveal complex genetic history of early European farmers. Nature 551, 368–372 (2017).

    Article 
    CAS 

    Google Scholar
     

  • de Barros Damgaard, P. et al. The first horse herders and the impact of early Bronze Age steppe expansions into Asia. Science https://doi.org/10.1126/science.aar7711 (2018).

  • Skourtanioti, E. et al. Genomic history of Neolithic to Bronze Age Anatolia, Northern Levant, and Southern Caucasus. Cell 181, 1158–1175 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Papazoglou-Manioudaki, L. & Paschalidis, C. in Proc. 3rd Int. Interdisciplinary Colloquium: The Periphery of the Mycenaean World (ed. Karantzali, E.) 437–487 (Ministry of Culture and Sports, 2021).

  • McGeorge, P. J. P. in 2èmes Rencontres d’Archéologie de l’IFEA: Le Mort dans la Ville Pratiques, Contextes et Impacts des Inhumations Intra-muros en Anatolie, du Début de l’Age du Bronze à l’Epoque Romaine (ed. Henry, O.) 1–20 (IFEA-Ege yayınları, 2011).

  • Ringbauer, H., Novembre, J. & Steinrücken, M. Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat. Commun. 12, 5425 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Valdiosera, C. et al. Four millennia of Iberian biomolecular prehistory illustrate the impact of prehistoric migrations at the far end of Eurasia. Proc. Natl Acad. Sci. USA 115, 3428 (2018).

    Article 
    CAS 

    Google Scholar
     

  • Ceballos, F. C. et al. Human inbreeding has decreased in time through the Holocene. Curr. Biol. 31, 3925–3934 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Evans, J. D. in Knossos, A Labyrinth of History: Papers Presented in Honour of Sinclair Hood (eds Evely, D. et al.) 1–22 (British School at Athens, 1994).

  • Horwitz, L. K. in The Neolithic Settlement of Knossos in Crete: New Evidence for the Early Occupation of Crete and the Aegean Islands (eds Efstratiou, N. et al.) 171–192 (INSTAP Academic Press, 2013).

  • Efstratiou, N., Karetsou, A. & Ntinou, M. (eds) The Neolithic Settlement of Knossos in Crete: New Evidence for the Early Occupation of Crete and the Aegean Islands (INSTAP Academic Press, 2013).

  • Andreou, S. in The Oxford Handbook of the Bronze Age Aegean (ca. 3000–1000 bc) (ed. Cline, E. H.) 643–659 (Oxford Univ. Press, 2010).

  • Driessen, J. & Macdonald, C. F. The Troubled island: Minoan Crete Before and After the Santorini Eruption (Université de Liège, 1997).

  • Nafplioti, A. “Mycenaean” political domination of Knossos following the Late Minoan IB destructions on Crete: negative evidence from strontium isotope ratio analysis (87Sr/86Sr). J. Archaeol. Sci. 35, 2307–2317 (2008).

    Article 

    Google Scholar
     

  • Miller, M. The Funerary Landscape at Knossos. A Diachronic Study of Minoan Burial Customs with Special Reference to the Warrior Graves (BAR Publishing, 2011).

  • D’Agata, A. L., Girella, L., Papadopoulou, E. & Aquini, D. G. (eds) One State, Many Worlds. Crete in the Late Minoan II-IIIA2 Early Period (Edizioni Quasar, 2022).

  • Maran, J. & Stockhammer, P. W. Emulation in ceramic of a bronze bucket of the Kurd type from Tiryns. ORIGINI 44, 93–110 (2020).


    Google Scholar
     

  • Miller, M. in Local and Global Perspectives on Mobility in the Eastern Mediterranean (ed. Aslaksen, O. C.) 111–133 (The Norwegian Institute at Athens, 2016).

  • Pålsson Hallager, B. Crete and Italy in the Late Bronze Age III Period. Am. J. Archaeol. 89, 293–306 (1985).

    Article 

    Google Scholar
     

  • Lévi-Strauss, C. Les Structures Elémentaires de la Parenté (Presses Universitaires de France, 1949).

  • Hamamy, H. et al. Consanguineous marriages, pearls and perils: Geneva International Consanguinity Workshop Report. Genet. Med. 13, 841–847 (2011).

    Article 

    Google Scholar
     

  • Ember, C. R., Gonzalez, B. & McCloskey, D. Marriage and Family (HRAF, 2021).

  • Alt, K. W. et al. Earliest evidence for social endogamy in the 9,000-year-old-population of Basta, Jordan. PLoS ONE 8, e65649 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Freilich, S. et al. Reconstructing genetic histories and social organisation in Neolithic and Bronze Age Croatia. Sci. Rep. 11, 16729 (2021).

    Article 
    CAS 

    Google Scholar
     

  • Prowse, T. L. & Lovell, N. C. Concordance of cranial and dental morphological traits and evidence for endogamy in ancient Egypt. Am. J. Phys. Anthropol. 101, 237–246 (1996).

    Article 
    CAS 

    Google Scholar
     

  • Pinhasi, R. et al. Optimal ancient DNA yields from the inner ear part of the human petrous bone. PLoS ONE https://doi.org/10.1371/journal.pone.0129102 (2015).

  • Dabney, J. et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc. Natl Acad. Sci. USA 110, 15758 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Meyer, M. & Kircher, M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb. Protoc. 2010, pdb.prot5448 (2010).

    Article 

    Google Scholar
     

  • Rohland, N., Harney, E., Mallick, S., Nordenfelt, S. & Reich, D. Partial uracil-DNA-glycosylase treatment for screening of ancient DNA. Philos. Trans. R. Soc. Lond. B 370, 20130624–20130624 (2015).

    Article 

    Google Scholar
     

  • Gansauge, M.-T. et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 45, e79–e79 (2017).

    CAS 

    Google Scholar
     

  • Rohland, N., Glocke, I., Aximu-Petri, A. & Meyer, M. Extraction of highly degraded DNA from ancient bones, teeth and sediments for high-throughput sequencing. Nat. Protoc. https://doi.org/10.1038/s41596-018-0050-5 (2018).

  • Peltzer, A. et al. EAGER: efficient ancient genome reconstruction. Genome Biol. 17, 60 (2016).

    Article 

    Google Scholar
     

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88–88 (2016).

    Article 

    Google Scholar
     

  • Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Jónsson, H., Ginolhac, A., Schubert, M., Johnson, P. & Orlando, L. mapDamage2.0: fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 29, 1682–1684 (2013).

    Article 

    Google Scholar
     

  • Fu, Q. et al. DNA analysis of an early modern human from Tianyuan Cave China. Proc. Natl. Acad. Sci. USA 110, 2223–2227 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    Article 
    CAS 

    Google Scholar
     

  • Daley, T. & Smith, A. D. Predicting the molecular complexity of sequencing libraries. Nat. Methods 10, 325–327 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Peyrégne, S. & Peter, B. M. AuthentiCT: a model of ancient DNA damage to estimate the proportion of present-day DNA contamination. Genome Biol. 21, 246 (2020).

    Article 

    Google Scholar
     

  • Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinf. 15, 356 (2014).

    Article 

    Google Scholar
     

  • Renaud, G., Slon, V., Duggan, A. T. & Kelso, J. Schmutzi: estimation of contamination and endogenous mitochondrial consensus calling for ancient DNA. Genome Biol. 16, 224 (2015).

    Article 

    Google Scholar
     

  • Furtwängler, A. et al. Ratio of mitochondrial to nuclear DNA affects contamination estimates in ancient DNA analysis. Sci. Rep. 8, 14075 (2018).

    Article 

    Google Scholar
     

  • Saupe, T. et al. Ancient genomes reveal structural shifts after the arrival of Steppe-related ancestry in the Italian Peninsula. Curr. Biol. https://doi.org/10.1016/j.cub.2021.04.022 (2021).

  • Weissensteiner, H. et al. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Rohrlach, A. B. et al. Using Y-chromosome capture enrichment to resolve haplogroup H2 shows new evidence for a two-path Neolithic expansion to Western Europe. Sci. Rep. 11, 15005 (2021).

  • Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, e190 (2006).

    Article 

    Google Scholar
     

  • Patterson, N. et al. Ancient admixture in human history. Genetics 192, 1065 (2012).

    Article 

    Google Scholar
     

  • Fernandes, D. M. et al. The spread of steppe and Iranian-related ancestry in the islands of the western Mediterranean. Nat. Ecol. Evol. 4, 334–345 (2020).

    Article 

    Google Scholar
     

  • Harney, É., Patterson, N., Reich, D. & Wakeley, J. Assessing the performance of qpAdm: a statistical tool for studying population admixture. Genetics https://doi.org/10.1093/genetics/iyaa045 (2021).

  • Narasimhan, V. M. et al. The formation of human populations in South and Central Asia. Science 365, eaat7487 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Chintalapati, M., Patterson, N. & Moorjani, P. The spatiotemporal patterns of major human admixture events during the European Holocene. eLife 11, e77625 (2022).

    Article 

    Google Scholar
     

  • Monroy Kuhn, J. M., Jakobsson, M. & Gunther, T. Estimating genetic kin relationships in prehistoric populations. PLoS ONE 13, e0195491 (2018).

    Article 

    Google Scholar
     

  • Lipatov, M., Sanjeev, K., Patro, R. & Veeramah, K. R. Maximum likelihood estimation of biological relatedness from low coverage sequencing data. Preprint at bioRxiv https://doi.org/10.1101/023374 (2015).

  • Spiliopoulou, A., Colombo, M., Orchard, P., Agakov, F. & McKeigue, P. GeneImp: fast imputation to large reference panels using genotype likelihoods from ultralow coverage sequencing. Genetics 206, 91–104 (2017).

    Article 

    Google Scholar
     

  • Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013).

    Article 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Comment